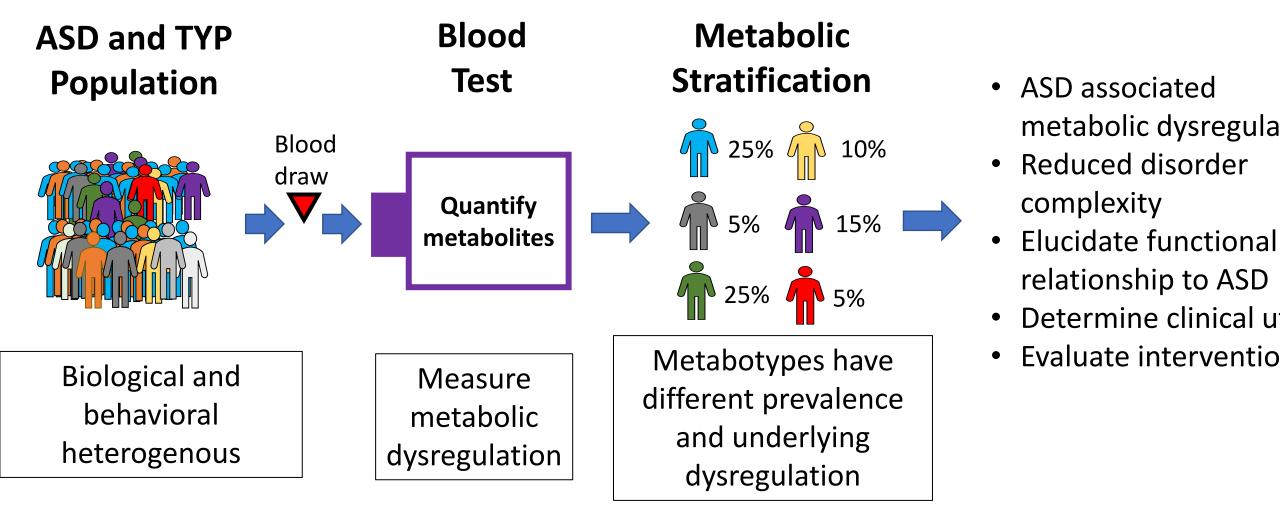
Development of a plasma metabotype-based biomarker test battery to screen for children at risk of ASD

Alan Smith^{1*}, Michael Ludwig¹, Lindsay Feuling¹, Denise Ney², Elizabeth Donley¹, Marvin Natowicz³, David Amaral⁴, Robert Burrier¹ Cleveland, OH, USA; ⁴The MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis, CA, USA; *Contact: asmith@stemina.com

¹NeuroPointDX, Madison, WI, USA; ²Department of Nutritional Sciences, University of Wisconsin-Madison, WI; ³Pathology and Laboratory Medicine, Genomics, Neurology, and Pediatrics Institutes, Cleveland Clinic,

Overview


Goals:

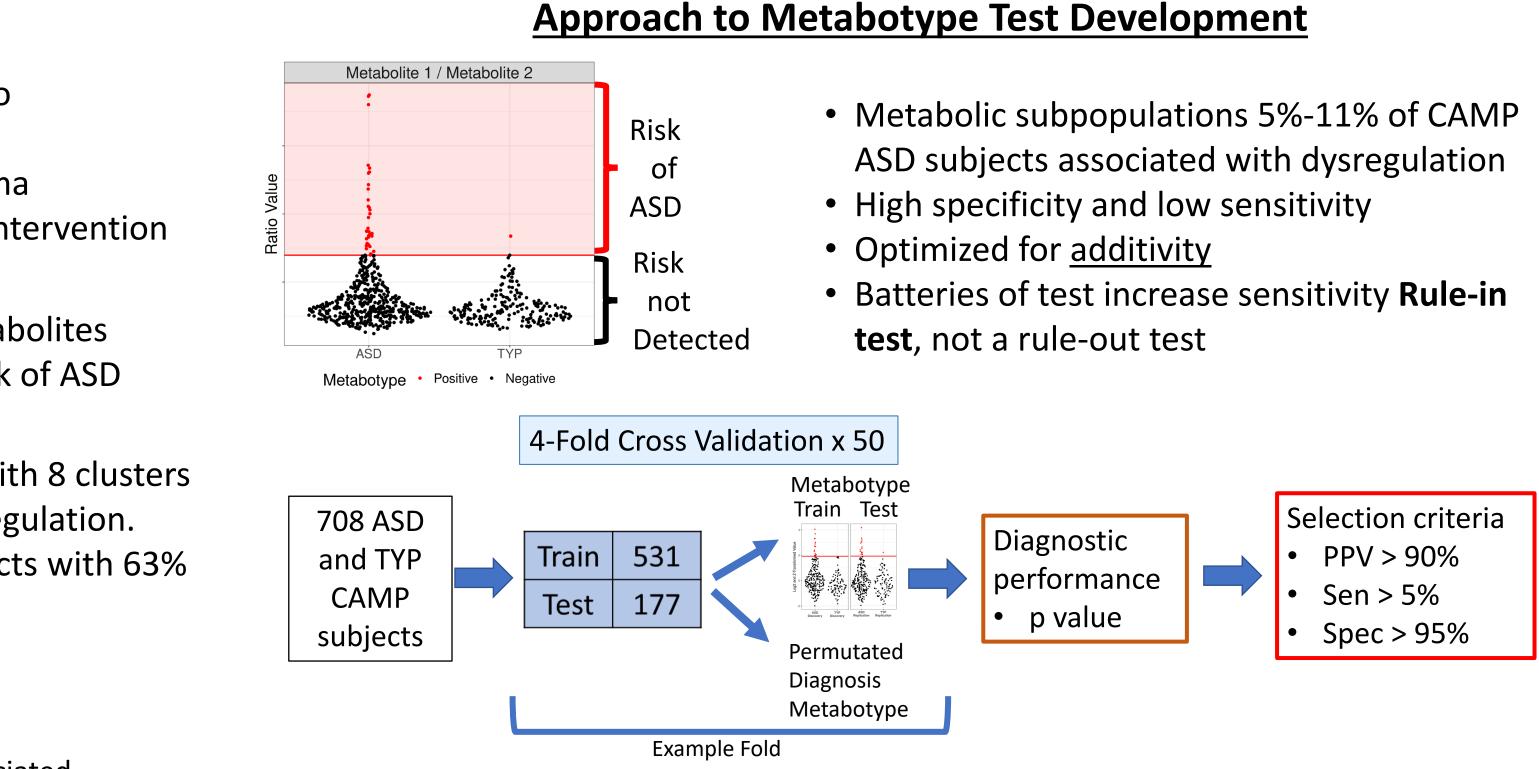
- Identify alterations in metabolism helpful to stratify CAMP ASD subjects into subpopulations of similar metabolic phenotypes (i.e metabotypes)
- Develop a quantitative screening approach based on measurement of plasma metabolites to identify children at risk of ASD and inform on more precise intervention

Methods:

- CLIA/CAP certified quantitative LC-MS/MS measurement of 42 plasma metabolites
- Computation to develop test of metabolic dysregulation associated with risk of ASD **Results:**
- Metabolites and ratios of metabolites identified dysregulation associated with 8 clusters of metabotypes. Clusters represent metabotypes that identify similar dysregulation.
- A test battery based on a subset of these ratios identified ASD CAMP subjects with 63% sensitivity and 90% specificity.

Concept:

<u>Children's Autism Metabolome Project (CAMP)</u>


- ClinicalTrials.gov Identifier: NCT02548442
- 8 clinical sites, assessments: ADOS-2, MSEL, and DSM-V, family medical history
- Overnight fasted blood draw in heparin tubes, plasma separated and store at -80 C
- Funded by NIH and the Nancy Lurie Marks Family Foundation

CAMP Study Population Demographics

Value	Nation Cincinnati Children's Hospital		
499	UC DAVIS HIND INSTITUTE UC Davis MIND Institute		
209			
70.5			
79	IelMed Center		
59.3	- Arkansas Children's		
35.1 (7.8)	Arkansas Children's Research Hospital U of Ark		
32.6 (8.7)	CAMP sites		
18 to 48	8 Premier Children'		
	Value 499 209 70.5 79 59.3 35.1 (7.8) 32.6 (8.7)		

^{a,b,c}Indicates a comparison with statistically significant difference between ASD and TYP populations (pvalue < 0.05). Abbreviations: TYP, typically developing; ASD, autism spectrum disorder

https://neuropointdx.com/studies/

- metabolic dysregulation
- relationship to ASD
- Determine clinical utility
- Evaluate interventions

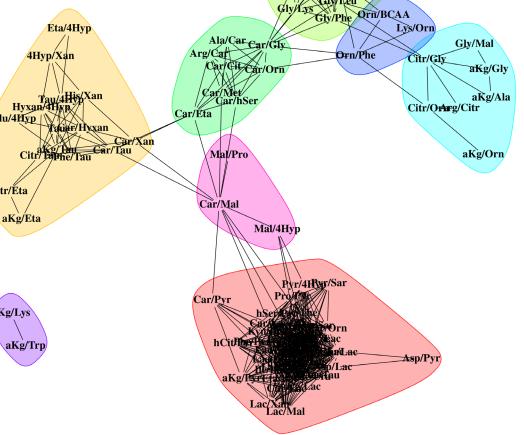
Children's Hospitals

Metabotyping Metabolic Dysregulation Associated with ASD

GABA BCAA panel

Glutamine BCAA panel

Test Battery Metabotype

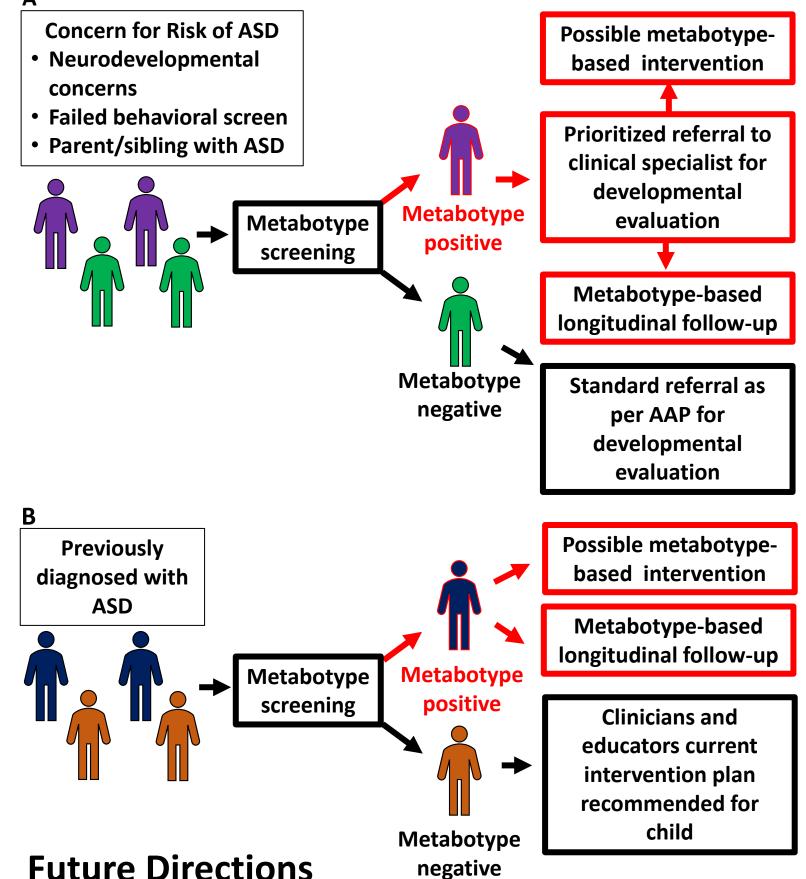

- 42 Metabolites quantified from heparin plasma samples • Amines and organic acids
- Generated 1764 unique ratios of
- metabolites
- A subset of 125 metabotype tests met minimum diagnostic criteria • 79% of CAMP ASD participants
- Clustered metabotypes
- Optimized a battery of 23 tests to identify ASD subjects at least 90% specificity
- Glycine BCAA panel Ornithine BCAA panel Alanine/a-Ketoglutarate Ethanolamine/4-Hydroxyproli Ethanolamine/a-Ketoglutarate Ethanolamine/Carnitine Ethanolamine/Kynurenine Glycine/Citrate Lactate/Glutamic acid Lactate/Homoserine Malate/Proline Ornithine/Carnitine Ornithine/Lysine Phenylalanine/Citrate Pyruvate/Aspartic acid Pyruvate/Homocitrulline Pyruvate/Sarcosine Taurine/a-Ketoglutarate Taurine/Phenylalanine Γryptophan/a-Ketoglutarate Xanthine/4-Hydroxyproline

Supporting Publications

Smith, A. M., et al.. (2019). Amino Acid Dysregulation Metabotypes: Potential Biomarkers for Diagnosis and Individualized Treatment for Subtypes of Autism Spectrum Disorder. Biological Psychiatry, 85(4), 345–354. <u>https://doi.org/10.1016/j.biopsych.2018.08.016</u>

Smith, A. M., et al.. (2020). A Metabolomics Approach to Screening for Autism Risk in the Children's Autism Metabolome Project. Autism Research : Official Journal of the International Society for Autism Research, 13(8), 1270–1285. https://doi.org/10.1002/aur.2330

Metabolic Clusters Indicate Dysregulation of Amine and Energy Metabolism



- when compared to TYP

Metabolomics Test Optimized to Detected Each Cluster of Dysregulation

- 23 metabotype tests selected that identify metabolic dysregulation represented each cluster
- Optimized test battery increased the overall sensitivity to 63% (95%CI, 58%-67%) with a specificity of 90% (95%CI 84-93%).

A Metabotype Testing Strategy to Support Diagnosis and Intervention

Future Directions

- Add biochemical domains through continued development of LC-MS/MS methods to identify additional metabotypes and increase sensitivity beyond 63%
- Additional longitudinal and prospective studies to improve our testing strategy and clinical application
- Clinical study of the first paired therapy to address a specific metabolic dysregulation

Metabotypes			
	Sensitivity	Specificity	
	7.8%	98.0%	
	9.8%	98.5%	
	8.0%	99.0%	
	8.4%	98.0%	
	6.0%	100.0%	
е	5.2%	100.0%	
	7.8%	98.5%	
	5.4%	100.0%	
	7.2%	98.5%	
	10.1%	99.5%	
	9.1%	100.0%	
	5.6%	100.0%	
	5.8%	99.5%	
	6.6%	100.0%	
	7.8%	99.0%	
	9.5%	98.6%	
	5.8%	99.5%	
	8.2%	99.0%	
	6.8%	99.0%	
	9.7%	98.1%	
	6.4%	99.0%	
	9.1%	98.5%	
	5.4%	99.5%	

Metabotype community analysis based on metabotype positive CAMP subjects identifies clusters of shared metabolic dysregulation

8 clusters highlight potential dysregulation in amino acid and energy metabolism in ASD

• These clusters may be associated with underlying pathophysiology of ASD

- A. Metabotype-based tests can support earlier diagnosis by identifying subsets of children having metabolic differences associated with ASD
- B. Those with ASD may benefit from a refined personalized intervention plan based of specific metabolic dysregulation